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Abstract. A mathematical programming problem is said to have separated nonconvex variables when 
the variables can be divided into two groups: x = ( x l , . . . ,  x,) and y = ( Y l , .  • • , Yn ) ,  such that the 
objective function and any constraint function is a sum of a convex function of (x, y) jointly and a 
nonconvex function of x alone. A method is proposed for solving a class of such problems which 
includes Lipschitz optimization, reverse convex programming problems and also more general 
nonconvex optimization problems. 
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Introduction 

It is common knowledge that the cost for solving a nonconvex global optimization 
problem generally increases exponentially as a function of the number of noncon- 
vex variables. Therefore, from the efficiency point of view, it is essential, when 
dealing with nonconvex problems, to be able to isolate the nonconvexity part in 
order to treat it separately. Of course, this separation is only provisional and must 
be suitably adjusted through an "integration" process in order to gradually 
improve the accuracy and approach the optimal solution in a reliable way. This 
decomposition strategy is particularly useful when the given problem is so 
structured that its nonconvexity is concentrated on a small part of the variables, 
while the total number of variables may be fairly large. Specifically, in many 
problems of interest encountered in the applications, the variables can be 
separated into two groups: x = ( x l , . . . ,  xp) and y = ( y l , . . . ,  yq), with p usually 
small as compared to q, so that the objective function and any constraint function 
is the sum of a convex function of (x, y) jointly and a nonconvex function of x 
alone. A typical problem of this class is the following: 

min(f(x) : (x, y) ~ 12, gi(x) ~ hi( Y)(i = 1 . . . . .  m)},  (P) 

where f :  RP---~R, gi" R P - ~ R  are continuous functions, l~ is a compact convex 
set, while hi: Rq---> R are affine functions. 

Note that problems with an objective function depending on both x and y can 
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easily be converted to this form. For example, the problem studied in [15]: 

min{F(x, y) - g(x): (x, y) E f~}, 

where F :  R p × Rq----~ R is convex, g:  RP----~ R is continuous, and 1~ is a polytope, 
can be rewritten as 

minimize t - g(x) s.t. (x, y) ~ f l  , F(x,  y) <-<_ t ,  a <= t <=/3, 

where c~ = min {F(x,  y) : (x, y) E f~} and/3 = max{F(x, y) : (x, y) E f~}. 
The aim of the present paper is to discuss methods for solving problem (P) that 

take advantage of the separability of the non-convex variables. 
In Part I of the paper we shall treat the problem under an additional 

assumption on the functions f (x )  and gi(x) which is fulfilled in particular when 
these functions are concave or Lipschitz. Obviously, reverse convex programming 
problems (see [5], [7] and the references therein) are most noticeable examples of 
problems of this class. 

The method to be proposed in Part I is one of branch and bound type 
characterized by two basic ideas. The first idea which was already contained in the 
works of Kalantar i -Rosen [6] and Rosen-Pardalos [9] (see also [5], [7]) is to 
branch with respect to the nonconvex variables only (however, we use simplicial 
rather than rectangular subdivision as in the mentioned w o r k s -  these are con- 
cerned only with quadratic objective functions). The second idea which is 
borrowed from the work of Hors t -Thoai -Benson is to use for lower bounding an 
outer approximation scheme of the convex constraints of the original problem. 

Part II of the paper treats the general case when f ( x )  and gi(x) are continuous 
but may not be concave or Lipschitz. Then the problem is to minimize a 
continuous function over a compact subset of a convex set. It turns out that the 
relief indicator method ([12], [14]) for minimizing a continuous function over a 
compact set can be adapted to handle the additional convex constraints. 

We assume that the reader is familiar with the concept of branch and bound 
and the technique of simplicial subdivision as used in many global optimization 
algorithms developed in recent years (otherwise a detailed presentation of these 
concepts can be found in [5]). 

I. Lipsehitz and Reverse Convex Programming 

In this part we study problem (P) under an additional assumption which is 
fulfilled for Lipshitz and reverse convex programming problems. 

1.1. A BRANCH AND BOUND METHOD 

DEFINITION.  A function f : R p ~ R is said to be locally lower linearizable if for 
every p-simplex M contained in a fixed compact subset of R e one can find an 
affine function ~bM(x ) such that: 
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qbu(x) <= f(x)Vx E M, sup[f(x) - (~M(X)] "-'~ 0 as diam(M)---> 0. 
x@M 

(diam(M) denotes the diameter of M, i.e. the length of its longest edge). The 
function qbM(x ) is then called a lower linearization of f(x) over M. 

As established in [16], f(x) is locally lower linearizable if it is concave or 
Lipschitz. In the former case, ~bM(x ) is the affine function that agrees with f(x) at 
the vertices of M. In the latter case, as ~bM(x ) one can take the affine function that 
agrees with f(XM) -- LIIx - XMII at the vertices of M, where L is the Lipschitz 
constant and x M is an arbitrary point of M. 

Now consider problem (P) where: (1) f~ = ((x, y) : G(x, y) <- 0}, with G : R p × 
Rq---> R a convex function; (2) the functions f(x), gi(x) are locally lower lineariz- 
able, with lower linearizations ~bM(x ), ekiM(X), respectively. 

When f(x), g;(x) are Lipschitz, (P) is a Lipschitz optimization problem; when 
f(x), gi(x) are concave, (P) is a reverse convex programming problem. In recent 
time these problems have been studied by many authors (see the references in 
[5]). However, the new feature to be dealt with here is the presence of the 
additional variables y which enter the problem in a convex way. 

To take advantage of this specific structure of the problem and of the lower 
linearizability property we propose for solving (P) a branch and bound method in 
which branching is performed with respect to the x-variables by subdividing the 
space into subsets of the form M × Y with M a p-simplex in R p and Y = R p. 
Furthermore, bounding is based on solving, for each simplex M in R p, a relaxed 
form of (P) obtained by lower linearizing f(x), gi(x) (i = 1 , . . . ,  m) and replacing 
the convex set f~ with an enclosing polyhedron. The latter is updated at each new 
iteration through an outer approximation process. 

Specifically, we start with a p-simplex M 0 in R p containing the projection of I) 
on this space. At iteration k, we already have at hand a linear system: 

Lj(x, y)<=O ( j e J k )  (1) 

with Jk C (1, 2 , . . . ,  k}, such that the polyhedron (1) contains fL Also we have a 
collection of subsimplices of M 0 that remain for investigation. For each simplex M 
of this collection a lower bound off(x) over all feasible points (x, y) with x E M is 
furnished by the optimal value/3(M) of the linear program: 

min(4~M(x) : Li(x, y) _-__0 ( j  e J D ,  LP(M)  

4,M;(x) - hi(y)( i  = 1 , . . . ,  m), x ~ M } .  

If 13(M)>= CBV (CBV := current best objective function value) then M is dis- 
carded from further consideration. As usual, the simplex M k chosen for branching 
corresponds to the minimal value of/3(M). Let (x k, yk) be a basic optimal solution 
of LP(Mk). If (x k, yk) ~ II then we set Jk+l = Jk (SO the system (1) is unchanged), 
otherwise, we set Jk+l = Jk U {k + 1} and construct a cut Lk+l(X, y) <= 0 separating 
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(X k, yg) strictly from 12, i.e. such that 

Lk+I(X k, yk) > O, L~+I(X, y) <= 0 V(X, y) E l-l. (2) 

From the general theory of outer approximation (see [41]) we know how to 
construct Lk+~(x, y) so as to eventually ensure that 

l im((x k, y k ) , . . .  (x k, yg), } C 12 (3) 
k - - - - ~  ' " ' ° 

(lim is the set of cluster points). For example, if we take 

Lk+l(X, y)= (u ~, x - - x  ~) + (v k, y - -yg)  + G(x k, yk) (4) 

where (u k, v h) is a subgradient of G(x, y) at (x k, yk), then (2) holds and (3) will 
be ensured (Lemma 1 below). 

As for the subdivision of Mk, it may follow several alternative rules. To 
guarantee convergence of the method we use the following (N, p)-rule (see [15]): 

(N, p are prechosen parameters: N is a natural number, p ~ (0, 1); usually 
N _-< 5 and p is close to 1; v(M) denotes the generation index of M computed by 
setting v(M0) = 0, z,(M') -- v(M) + 1 whenever M' is a son of M). 

(N, p)-rule. Let M~ = [Skl,. . .  , sk'P+l]. If m a x ( l l x  k - : r = 1 , . . . ,  p + 1) _--< 
p diam(Mk) and U(Mk) is not a multiple of N, then divide M k with respect to Xk; 
otherwise, divide it with respect to the midpoint of a longest edge. 

In a formal way the algorithm can be stated as follows: 

ALGORITHM 1 

Initialization. 
Take a p-simplex M 0 in R e containing the projection of f~ on R p. If a feasible 
point (~?k,)Tk) is available, let CBV=f(Yk); otherwise CBV= +~. Set J1 =~,  
d~l = ~1 = (m0}, k = 1. 

Iteration k = 1, 2 . . . .  
(1) For each M E ~k solve the linear program LP(M) obtaining its optimal 

value /3(M). Update CBV and (j?k,)7 x) whenever the optimal solution of a 
LP(M) is feasible. 

(2) Delete all M Ed¢ k such that /3(M)_-< CBV (and all M that are known to 
contain no feasible solution). Let ~ be the collection of remaining simplices. If 
~ =1~ then terminate: (~?k,)Tk) solves (P) (if CBV< +o~), or (P) is feasible (if 
CBV= +oo). Otherwise, go to (3). 

(3) Select M~ @ argmin{/3(M): M ~ ~g) and subdivide M k following the 
(N, p)-rule. Denote by ~k+l the partition of M k. 

(4) Let (x k, yk) be a basic optimal solution of LP(Mk). If (x k, yk) @ 12 then set 
Jk+l = Jk; otherwise, set Jk+l = Jk U {k + 1} and const ruct  Lk+l(X , y) according 
to (4). 

(5) Set Mk+l = ( ~ \ ( M k ) )  tO ~k+l, k<--k + 1 and return to (1). 
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1.2. CONVERGENCE 

We now prove the convergence of the above algorithm. Assume that the 
algorithm is infinite. 

LEMMA 1. Condition (3) holds. 
Proof. This follows from the general theory of outer approximation. We give 

here a direct proof which is very simple. Let (x*, y * ) =  lim(x k, yk) (k'--> oo, k E 
A). We have to show that G(x*, y*) <-<_ O. Since this is obvious if G(x k, yk) <= 0 for 
infinitely many k E A, we can assume that G(x k, yk)> 0 (i.e. (x k, y~)~I~) for all 
k E A sufficiently large. Then Lk+l(x, y) is defined for these k and since for 
l > k + 1, (x l, yl) solves LP(M) we have Lk+1(x t, J )  <-- O, hence, by making l---> 0% 
Lk+~(X*, y*) <--_ O. But 

Lg+x(X, ' y , )  = (uk, x , _ X ~) + (V k ' y , _  yk) + G(x ~, yk) . (5) 

Since the sequence {(x k, yk)} is bounded, it follows from a known property of 
the subgradients of a convex function ([8], Theorem 24.7) that the sequence 
{(u k, ok)) is bounded too. Letting then k--->oo in (5) yields G(x*,y*) 
= lim Lk+l(x*, y*) <= O, as desired. [] 

LEMMA 2. We have diam(Mk)--->O(k---~ ~). 
Proof. This follows from the exhaustiveness of the (N, p) subdivision process 

(see [16]). [] 

LEMMA 3. Any cluster point (x*, y*) of the sequence {(x k, yk)} is feasible to 
(P). 

Proof. Let (x*, y*) = lim(x k, yk) (k--~ oo, k E h). Since (~Mki(X k) ~ hi(y k) and 
¢kMki(X ) is a lower linearization of gi(x) o v e r  Mk, it follows from Lemma 2, by 
making k---> 0¢ (k E A), that gi(x*) <= hi(y* ) (i = 1 . . . . .  m). On the other hand, 
(x*, y * ) ~  ~2 by Lemma 1. [] 

THEOREM 1. I f  Algorithm 1 is infinite then any cluster point of  the sequence 
((x k, yk)) solves (P). 

Proof. Let (x*,y*)=lim(xk,  y ~) (k - ->~ ,kEA) .  By Lemma 3, (x*,y*) is 
feasible. Furthermore, since diam(Mk)-->0 by Lemma 2, we have f(xk) - 
fl(M~) =f(xk)  - dpMk(xk)--->O by virtue of the property of lower linearization. 
Hence f(x*) = lim [3(Mk). But for any feasible (x, y) we have f(x) >= [3(M) > 
fl(Mr) >= fl(Mk) if x belongs to some M deleted at an iteration r <  k, while 
f(x) ~ fi(M) >-- fl(Mk) if (x, y) belongs to some M E ~k. In any case, f(x) >= [3(Mk) 
for all k, hence f(x) >- f(x*). [] 

REMARKS. (i) The linear program LP(S) can be written in a more convenient 
form. If S = [ s~ , . . . ,  s p+~] then LP(S) is equivalent to 
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p + l  p + l  

min ~ A/hM(s ~) s.t. ~, A~Lj(s ~, y)_--<O ( j E J k )  , 
r = l  r = l  

p + l  p + l  

E ArqbMi(S r) < hi(Y) (i = 1 , . . . ,  m) ,  ~ A r = 1, 
r=l  r=l  

A~->0 Yr.  

(ii) When f(x) and g i ( x ) ( i  = 1 . . . .  , m) are concave (as in reverse convex 
programming problems), then ~bM(x ) and ~bMi(x ) agree with f(x) and gl(x) resp. at 
the vertices of M. In this case, instead of the (N, p)-rule one can use a simpler 
and more efficient subdivision rule, namely: 

(*) If v(Mk) is a multiple of N then bisect Mk; otherwise, divide M k with 
k respect to x .  

Denote by K the set of all k = 1, 2 , . . .  for which v(Mk) is not multiple of N. 
Instead of Lemmas 2, 3 and Theorem 1 we have now: 

LEMMA 2'. Let M k = [ s k i , . . . ,  sk'p+I]. Then min(llx ~ -  r = 1 , . . . ,  p + 
1}-->0 as k--->oo (k E K). 

Proof. This follows from Theorem 2 in [15]. [] 

LEMMA 3'. Any cluster point of  the sequence {(x k, yk), k ~ K} is feasible to (P). 
Proof. Let (x*, y*)=l im(x  k, yk) (k--->% k E A C  K). In view of Lemma 2', 

without loss of generality one can assume that IIx*-¢111  0 as k--, (k a), 
But ~bM~(x ) coincides with gi(x) at the vertices of M k. Therefore, ~bM~(x k) - 
gi(skl)--->O, i .e .  ~bMki(Xk)"-->gi(x*). Since  q~Mi(Xk)<-hi(yk), w e  then deduce 
g~(x*)<-_hi(y *) ( i=  1 , . . .  ,m),  which, together with the fact (x*, y * ) ~ f l  
(Lemma 1), implies that (x*, y*) is feasible. [] 

T H E O R E M  1'. Assume that f(x) and gi(x) (i = 1 , . . . ,  m) are concave. I f  Al- 
gorithm 1 with the subdivision rule (*) instead of  (N, p) is infinite then any cluster 
point (x*, y*) of  the sequence {(x k, yk), k E K} solves (P). 

Proof. Reasoning as in the proof of Lemma 3' we can show that f l(Mk)= 
qbu~(xk)-->f(x *) as k - - ~  (k@ K). The proof can then be completed just as for 
Theorem 1. [] 

II. Continuous Optimization 

We now consider problem (P) where f(x) and gi(x) are assumed only to be 
continuous. 

11.1. REDUCTION TO D.C. OPTIMIZATION 

Introducing additional variables t i we can rewrite (P) as 

min{f(x) • (x, y) E •, t~ <-_ hi(y), g~(x) <-_ t~, a <-_ t i < [3(i = 1 . . . . . .  m) } , 
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where a = min{gi(x): i = 1 , . . . ,  m, (x, y) ~ ll for some y}, /3 = max{hi(x): i = 
1 . . . .  , m, (x, y) E I I  for some y}. After a change of notation we thus obtain the 
problem: 

min{f(x) : x E S, G(x, y) <- 0}, (Q) 

where f :  R"---> is a continuous function, S is a compact subset of R" and 
G: R"+q--> R is a convex function. 

In [12] and [13] a method called the Relief Indicator Method (RIM) has been 
developed for minimizing a continuous function over a compact set. Of course 
this method could he applied here to problem (Q) considered as a problem in 
R "+q. However, this approach is not advisable since it would lead to solve a 
difficult problem of very large size. A better approach is to consider y as an 
intermediate variable and apply RIM to the problem in Rn: 

min(f(x) : x E C}, C = {x @ S: min G(x, y) <= 0} y 

Still, this approach may not be the best since it does not take advantage of the 
convexity of the constraint G(x, y) <-_ O, making no distinction between the latter 
and the much more difficult constraint x E S. 

Below we propose to treat the constraint G(x, y)<= 0 as an additional convex 
constraint to the main problem 

min{f(x) : x E S}.  (R) 

For each a ~ ( - ~ ,  +~] let 

so : {x S: : { x E S :  f(x)_-< 

and denote by d(u, A) the distance from u to A. 
Following [12] we say that a lower semi-continuous function 

r(~, u): ( - ~ ,  + ~ ] ×  Rn-->R is a separator for the function f over the set S 
(briefly, for (f ,  S)) if it satisfies the following conditions: 

(i) 0 < r(a, u) <= d(u, 7.); 
(ii) r(oq, u) >= r (a2,  u) whenever a 1 _-< 0~2; 

(iii) r(a, u) > 0 whenever u ~ S  a. 
A trivial example of separators is the distance function d(u, S~) but this 

separator is of little use since computing it is as difficult as solving the problem 
itself. More practical separators for the most usual cases have been given in [11]. 

Assuming that a separator r(a, u) for (f ,  S) is available whose value at any 
given point can be computed without difficulty, let us define the function 

h(a, x) = sup{r2(ot, u) + 2(x, u) - Ilul12: , ~ ' s ~ }  (6) 

Clearly, for ~ fixed, h(a, x) is a closed convex function as the pointwise 
supremum of a family of affine functions. Consider now the following d.c. 
optimization problem which depends on the parameter ~: 
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min{h(a, x) - Ilxll~: G(x, y) =< 0) .  (Q , )  

Assume the regularity condition: 

min(Q) = inf{f(x) : x E int S, G(x, y) =< 0}. (7) 

THEOREM 2. (1) I f  the optimal value of (Q~) is positive then f(x) > a for all 
feasible solutions (x, y) to (Q). 

(ii) I f  the optimal value of ( Q~) is negative then any (x, y) feasible to ( Q~ ) such 
that h(ot, x) - Ilxll 2 < 0 yields a feasible solution x to ( a )  such that f(x) < or. 

(iii) I f  the optimal value of  (Q~) is 0 then any optimal solution (x*, y*) of (Q~) 
yields an optimal solution x* of (Q). 

Proof. (i) Suppose that the optimal value of (Q~) is positive and consider any 
feasible solution (x, y) to (Q). Then h(a, x) - Itxll 2 > 0, hence from (6), there is a 
uJ~S,  such that: 

r2(a, u) + 2(x, u) - Ilull 2 > Ilxll = 

Consequently, d2(u, Sz) >= r2(a, u) > IIx - ull 2. This implies x ~ ' ~ ,  for otherwise 
one w o u l d  have  d(u, so) ~ IIx - nil. Since x ~ s it follows that f(x) > a. 

(ii) Suppose that the optimal value of (Q~) is negative and consider any (x, y) 
feasible to (Q~) such that h(a, x) - IIx II z <  0. The latter inequality implies that if 
x~i(S~ then r2(a, x) + 2(x, x)  - Ilxll = < Ilxll =, i .e.  r=(,~, x) <0.  Since this is im- 
possible, we must have x ~ S~, i.e. x E S, f(x) < u. 

(iii) Suppose that the optimal value of (Q , )  is 0 and consider any optimal 
solution (x*, y*) of (Q~). Then for all u f~S  a we have 

r2(a, u) + 2(x*, u) - Ilull 2 __-< IIx*ll ~, i.e. r2(a, u) =< II x* - nil = , 

hence, x* ~ S~, for otherwise, putting u = x* in the above inequality would yield 
r2(a,x*)<-0 and this would imply by virtue of property (iii) of a separator, 
x* E S,. Therefore, x* E S and f(x*) -< a. On the other hand, if (Q) has a feasible 
solution (x, y) with f(x) < a then from the regularity condition (7) there exists a 
feasible solution (x', y ' )  to (Q) such that x' E int S~, so that we can find a ball of 
centre x' and radius 8 >0 ,  contained in S~. This implies that for all u~S~:  
d2(u,S~)<-IIx'-ull2-~ ~, hence r=(a,u)+2(x',u)-llull2<-IIx'12-~ 2, i.e. 
h(~, x ' )  - IIx'll 2 _-< _~2 < 0 ,  a contradiction. Therefore, f(x*) = a and x* is an 
optimal solution of (O). [] 

II.2. GENERALIZED RELIEF INDICATOR METHOD 

Theorem 2 reduces problem (Q) to solving the parametric d.c. optimization 
problem (Q~), or more precisely, to finding a such that min(Q~)= 0. 

In the absence of the convex constraint G(x, y) <= 0 this problem was solved in 
[12] by an outer approximation method. Below we present a branch and bound 
procedure that extends the algorithm in [14]. 

We rewrite ( Q , )  in the form of a concave minimization problem: 
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ALGORITHM 2 

Initialization. 
Take an n-simplex M, in Rn that is known to contain an optimal solution of ( Q ) .  
If a feasible solution (xo7 is available then let a,  = f (xO);  otherwise, let 
a,= +m. Set I ,  = Jl =O, d l  = PI = {M,),  k =  1. 

Iteration k = l ,2 ,  . . . 
(1) For each M E 9, solve the linear program 

where d M ( x )  denotes the affine function that agrees with llx112 at the vertices of 
M .  Let p ( M )  be the optimal value and ( x ( M ) ,  y (M) ,  t (M) )  a basic optimal 
solution of LP(M).  

(2) In A, delete all M such that P ( M )  > 0.  Let 9, be the collection of 
remaining simplices. If 24, = 0, terminate: ( Q )  is infeasible. Otherwise, go to (3). 

k ( 3 )  Select Mk E argmin{P(M) : M E 9,). Let xk = x(M,), y = y(M,), tk  = 

t(Mk). 
I f  P(M, )  = 0 ,  terminate: if a,-, < +w then (xk-l,  y k - l )  solves ( Q ) ,  if a,-, = 

+m then ( Q )  is infeasible. If /3(Mk) < 0 then go to (4). 
(4) Set 

a,-, if (xk,  y k )  is infeasible to ( Q ) ;  

min{ak-, , f ( x k ) )  otherwise, 

and define (xk7 y k )  such that f ( x k )  = a,. 
k ~f JIxk1I2 5 tk and G(X , y k )  S O ,  then set I,,, = I,, J,,, = J,. 

Otherwise, if \Ixk 1 1 2  - tk > G(x,, y k )  then set J,,, = J,, 

I , , ,  = I,  u { k ) ,  L,(x) = r2(ak ,  2) + 2 ( x ,  x k )  - IIxkl12 . 

k 2  k If I I x  1 1  - t  5 G(xk,  y k )  then set I,,, = I,, 

where (uk ,  v k )  is a subgradient of G ( x ,  y )  at (xk ,  y k ) .  
(5) Subdivide M, following the rule (*). let 9,,, be the partition of M,. 
(6) Set A,,, = (%,\{M,}) U Pk+,, k t k + 1 and return to (1). 
The convergence of the above algorithm can be established by the same method 

as that used for the algorithm in [I41 (which treats the problem when G(x7 y )  = 0 ,  
i.e. in the absence of the convex constraint). 
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As before let K denote the set of all natural numbers that are not multiple of N. 

L E M M A  4. ~bMk(X ~) - - I lx~l lZ~o as k - - ~  ( k@K) .  
Proof. Let M k [ S  k l ,  k n + 1 ,  = . . . ,  s ' l- Without loss of generality we can assume 

that II~ ~ - s ~11--, 0 (see Lemma 2'). Then arguing as in the proof of Lemma 3' we 
see that 4%k(x ~) -Ilx~ll  = ~.,~(x ~) -][skll[-4- [ l l s~l l -  IIx~ll]--, 0 as k---~ oo (k E g ) .  

[] 

L E M M A  5. (1) tk=max{L~(xk): i ~ l~ ) ;  
(2) Lk (xk )> t  k, Lk(xt)<=t whenever L k is defined and l > k ;  similarly, 

H(x k, x k) > 0 and Hk(X l, yt) < 0 whenever H k is defined and l > k. 
(3) For any convergent subsequence (x k, yk, tk)__>(X ,, y , ,  t*) (k---~oo, k ~ A )  

we have t* -IIx*ll = = 0 ,  a(x*, y*)=0.  
Proof. The first point follows from the fact that (x ~, yk, t k) solves LP(Mk). To 

see the second point, observe that when L k is defined, we must have IIx~ll ~ < t ~, so 
that 

k 2 ~ 0 Lk(x ) = r (ok, xk) + 2( xk, xg) - IIx~ll ~- > IIx~ll 2 > t~ 

Similarly, when Hk(x, y) is defined, we must have Hk(x k, yk)= G(x k, yk) >0. 
The third point is obvious if o- k := max{llx~rt ~ -  t~; G(x ~, yk))<_ 0 for infinitely 
many k U A. Therefore, it suffices to consider the case when tr~ < 0 for all but 
finitely many k E A. Suppose that o- k = IIx~ll 2 - t ~ for infinitely many k E A. For 
l > k we have Lk(X t) <= t, hence fixing k and letting I---~ +oo we obtain Lk(x* ) <- t*. 
Then 

< 2 0 = r (a k, x k) = Lk(x*) - 2(x k, x*) + Ilx~[I 2 

<= t* - 2(xk, x *) + IIx~l12~ t* - I I x * l l  = , 

which shows that IIx~ll 2 -  ? - - ,  IIx*ll 2 -  t* = o ,  and hence o "k---~ 0. Since ~r k ---< 
G(x k, yk) <_NO, it follows that G(x k, yk)____~ G(x*, y*) = O. 

If o- k = G(x k, yk) for infinitely many k CA,  then by the same argument 
as that used for the proof of Lemma 1, we can see that G(x k, yk)___~ G(x*, y*) = 
O, hence o-k--~ O, which in turn implies Ilxkll 2 -  tk--> IIx*[I 2 -  t * = o .  [] 

T H E O R E M  3. I f  the algorithm is infinite then a k --> a * = min(Q) and any cluster 
point of  the sequence {(x k, yk, tk)}, k E K, yields an optimal solution (x*, y*) of  
(Q). 

Proof. Let (x*, y*, t*) = lim(x k, yk, t k) (k---~oo, k E A ) .  Since /~(M~)= [t k -  
[[xkl[ 2] - [4~Mk(X k) -- [[Xk[[ 2] it follows from Lemmas 1 and 5 that 13(Mk)---> 0. Now 

let a * = l i m % .  Noting that r(o~k, U) <=r(a*, u), we can write Lg(x)<= 
r2(a *, x k) + 2(x,  x k) - Ilx~tl 2 ~ h(a*, x)Vk, Vx, hence 

fl(Mk) <= min{t - Ilxll~: h(~ *, x) <= t, G(x, y) <= O} = in f (Q~ , ) .  
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Therefore, i n f (Q~ . )>0 .  If i n f ( Q . . ) > 0  then by Theorem 2, f ( x ) >  a* for all 
feasible solutions to (Q), which implies, on the one hand, that a* < +~,  on the 
other hand, that f (x k) > a*, which is not the case since f (x k) = ag$a*. Conse- 
quently, i n f (Q~ . )=  0, and the conclusion follows from Theorem 2. [] 

Note that since the objective function of ( Q . )  is quadratic separable, rectangular 
subdivision can be used instead of simplicial subdivision (see [15]). 

Conclusion 

In this paper we have considered a general method for handling a class of 
nonconvex mathematical programming problems where the nonconvexity is re- 
stricted to a relatively small number of variables and can be treated separately. 
This class includes all problems of the form 

minimize F(x, y) + f(x) s.t. (x, y) E 12, g(x) <- h(y) ,  

where F :  RP× Rq--*R is a convex function, f :  RP---~R is a continuous (in 
particular, concave or Lipschitz) function, ~ is compact convex set, g : R p ~ R" is 
continuous (in particular, concave or Lipschitz) mapping, h : Rq----~ R "~ is an affine 
mapping. Indeed, the just stated problem is equivalent to minimizing t + f(x) 
subject to (x, y) C ~,  g(x) <-_ h( y), F(x, y) <= t. Thus, the method applies in fact to 
a wide class of nonconvex problems of large size (but with few nonconvex 
variables) encountered in the applications. Computational experiments to test the 
efficiency of this approach are under way and will be reported subsequently. Also 
we shall show in a subsequent paper how the method developed above can be 
applied to solve convex two-level optimization problems of the kind considered in 
[1]. 
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